How to define systematically all possible two-particle state vectors in terms of conditional probabilities

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1990 J. Phys. A: Math. Gen. 23367
(http://iopscience.iop.org/0305-4470/23/3/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:57

Please note that terms and conditions apply.

COMMENT

How to define systematically all possible two-particle state vectors in terms of conditional probabilities

Fedor Herbut
Facuity of Physics, University of Belgrade, POB 550, 11001 Beograd, Yugoslavia

Received 29 August 1989

Abstract

All possible two-particle state vectors $|\phi\rangle_{12}$ can be generated in a systematic way from first-particle-reduced statistical operators ρ_{1} and anti-unitary correlation operators. It is pointed out that this procedure is easily completed so that $|\phi\rangle_{12}$ is defined in terms of ρ_{1} and conditional statistical operators for the second particle.

To explain the problem addressed in this comment, we turn to classical discrete probability theory. Let M and N be two sets of at most countably infinite cardinality, and $p_{m n}$ probability distributions on $M \times N\left(\forall m, \forall n: p_{m n}>0 ; \Sigma_{m n} p_{m n}=1\right)$. As is well known, $p_{m}=\Sigma_{n} p_{m n}$ is the marginal (distribution) on M, and for every $m \in M, p_{m}>0$: $p(n \mid m) \equiv p_{m n} / p_{m}$ is the corresponding conditional probability on N. Now, if we want to define systematically all possible $p_{m n}$, a natural way to do this is given by the following construction.
(a) The first step is to choose an arbitrary marginal p_{m}, and for different choices the final $p_{m n}$ are certainly different.
(b) In the second step (we actually have a set of substeps), for each $m \in M, p_{m}>0$, we choose an arbitrary probability distribution $p(n \mid m)$ for the conditional probability, and for distinct choices we obtain distinct $p_{m n} \equiv p_{m} p(n \mid m)$.

Observe the three important features of this construction.
(i) The first step is the definition of the marginal.
(ii) The nth step may depend on the ($n-1$) preceding ones, but not on the succeeding ones.
(iii) A different choice at each step (or substep) necessarily gives different final p_{m}.

The problem is how to follow this procedure of construction in quantum mechanics. It is the purpose of this comment to point out that along the lines (i)-(iii) one can define all two-particle (or two-subsystem) state vectors $|\phi\rangle_{12} \in \mathscr{H}_{1} \otimes \mathscr{H}_{2}$ (\mathscr{H}_{i} being separable Hilbert spaces, $i=1,2$). I believe this is of some importance for a systematic study of quantum mechanical correlations.

It was shown in previous work (see corollary 1 in subsection 2.1 of Herbut 1986) that any statistical operator ρ_{12} in $\mathscr{H}_{1} \otimes \mathscr{H}_{2}\left(\rho_{12} \geqslant 0, \operatorname{Tr}_{12} \rho_{12}=1\right)$ is defined in terms of its reduced statistical operator in \mathscr{H}_{1}

$$
\begin{equation*}
\rho_{1} \equiv \operatorname{Tr}_{2} \rho_{12} \tag{1}
\end{equation*}
$$

(Tr_{2} being the partial trace in $\mathscr{H}_{2} ; \rho_{1}$ is the counterpart of the p_{m} above), and the set of all conditional statistical operators (the counterparts of the $p(n \mid m)$) to which ρ_{12} gives rise:

$$
\begin{equation*}
\forall P_{1} \in \mathscr{P}\left(\mathscr{H}_{1}\right), p \equiv \operatorname{Tr}_{1} P_{\mathrm{i}} \rho_{1}>0 \quad \rho_{2}\left(P_{1}\right) \equiv p^{-1} \operatorname{Tr}_{2}\left(P_{1} \otimes 1\right) \rho_{12} \tag{2}
\end{equation*}
$$

where $\mathscr{P}\left(\mathscr{H}_{1}\right)$ is the set of all projectors in \mathscr{H}_{1}. Actually, it was shown that if $\rho_{12} \neq \rho_{12}^{\prime}$, then either $\rho_{1} \neq \rho_{1}^{\prime}$ (cf (1)), and/or

$$
\exists P_{1} \in \mathscr{P}\left(\mathscr{H}_{1}\right) \quad \operatorname{Tr}_{1} \rho_{1} P_{1}>0 \quad \rho_{2}\left(P_{1}\right) \neq \rho_{2}^{\prime}\left(P_{1}\right)
$$

($\mathrm{cf}(2)$).
The physical meaning of $\rho_{2}\left(P_{1}\right)$ is that it represents the state of the second particle under the condition that the quantum event P_{1} occurred (its characteristic value 1 was obtained in first-kind or second-kind measurement) on the first particle.

In the case of general statistical operators ρ_{12} it is far from clear how one could give a construction procedure along the lines (i)-(iii). But it seems a natural assumption that it should be feasible.

As far as pure-state statistical operators $\rho_{12} \equiv|\phi\rangle_{12}\left\langle\left.\phi\right|_{12}\right.$ are concerned, there is another relevant previous result (see theorems 4,5 and 7 in Herbut and Vujičić (1976)). Each state vector $|\phi\rangle_{12} \in \mathscr{H}_{1} \otimes \mathscr{H}_{2}$ can be constructed along the lines (i)-(iii) (but not in terms of conditional statistical operators).
(a) One chooses an arbitrary statistical operator ρ_{1} in \mathscr{H}_{1} to be the first-particlereduced statistical operator. Different choices lead eventually to different $|\phi\rangle_{12}$.
(b) One chooses an antiunitary map of $R\left(\rho_{1}\right)$ (the range of $\left.\rho_{1}\right)$ into $\mathscr{H}_{2}: U_{a}$ (the so-called correlation operator of $|\phi\rangle_{12}$). Distinct choices result in distinct $|\phi\rangle_{12}$.

Finally, one may take an eigenbasis $\left\{|i\rangle_{1}: \forall i\right\}$ of ρ_{1} spanning $R\left(\rho_{1}\right)$, and then

$$
\begin{equation*}
|\phi\rangle_{12}=\Sigma_{i} r_{i}^{1 / 2}|i\rangle_{1} \otimes\left(U_{a}|i\rangle_{1}\right) \tag{3}
\end{equation*}
$$

(all such sub-bases give one and the same $|\phi\rangle_{12}$). Here r_{1} is the chacteristic value of ρ_{1} corresponding to $|i\rangle_{1}, i=1,2, \ldots$.

All we do now is introduce the conditional statistical operators. Let $|\varphi\rangle_{1} \in \mathscr{H}_{1}$ be outside the null space of ρ_{1} (otherwise $\operatorname{Tr}_{1} \rho_{1}|\varphi\rangle_{1}\langle\varphi|=0$, and $\operatorname{Tr}_{2}\left(|\varphi\rangle_{1}\left\langle\left.\varphi\right|_{1} \otimes 1\right)|\phi\rangle_{12}\left\langle\left.\phi\right|_{12}=\right.\right.$ 0 as seen from (3)). We define

$$
\begin{equation*}
|\chi\rangle_{2} \equiv U_{a} \rho_{1}^{1 / 2}|\varphi\rangle_{1} / \| U_{a} \rho_{1}^{1 / 2}|\varphi\rangle_{1} \| . \tag{4}
\end{equation*}
$$

Then

$$
\rho_{2}\left(|\varphi\rangle_{1}\left\langle\left.\varphi\right|_{1}\right)=|\chi\rangle_{2}\left\langle\left.\chi\right|_{2}\right.\right.
$$

where the left-hand side is the conditional statistical operator from $|\phi\rangle_{12}$ that is given by (3). (For the proof see equation (34) and theorem 1 in Herbut and Vujičić 1976.)

For an aribtrary $P_{1} \in \mathscr{P}\left(\mathscr{H}_{1}\right)$, we first decompose it into orthogonal ray projectors:

$$
\begin{equation*}
P_{1}=\boldsymbol{\Sigma}_{k}\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right| . \tag{5}
\end{equation*}
$$

Since

$$
\begin{aligned}
\rho_{2}\left(P_{1}\right) & \equiv p^{-1} \operatorname{Tr}_{2}\left(1 \otimes \Sigma_{k}\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right|\right) \rho_{12} \\
& =\Sigma_{k}^{\prime}\left(\operatorname{Tr}_{1} \rho_{1}\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right| / \operatorname{Tr}_{1} \rho_{1} P_{1}\right) \rho_{2}\left(\left|\varphi_{k}\right\rangle\left\langle\varphi_{k}\right|\right)
\end{aligned}
$$

(the prime denotes that the $\left|\varphi_{k}\right\rangle$ from the null space of ρ_{1} are omitted), we finally have

$$
\begin{equation*}
\rho_{2}\left(P_{1}\right)=\Sigma_{k}^{\prime}\left(\operatorname{Tr}_{1} \rho_{1}\left|\boldsymbol{\varphi}_{k}\right\rangle\left\langle\boldsymbol{\varphi}_{k}\right| / \operatorname{Tr}_{1} \rho_{1} P_{1}\right)\left|\chi_{k}\right\rangle\left\langle\chi_{k}\right| \tag{6}
\end{equation*}
$$

where $\left|\chi_{k}\right\rangle$ is determined by $\left|\varphi_{k}\right\rangle$ via (4). The operator $\rho_{2}\left(P_{1}\right)$ does not depend on the choice of the decomposition (5).

Thus ρ_{1} and the correlation operator U_{a} define the entire requisite set of conditional statistical operators $\left\{\rho_{2}\left(P_{1}\right): \forall P_{1} \in \mathscr{P}\left(\mathscr{H}_{1}\right), \operatorname{Tr}_{1} \rho_{1} P_{1}>0\right\}$. But to define all $\rho_{12} \equiv|\phi\rangle_{12}\left\langle\left.\phi\right|_{12}\right.$ systematically, one can hardly do better than go via (3) as explained above.

This construction of $|\phi\rangle_{12}$ in terms of the correlation operator U_{a} may come as a surprise to the reader unfamiliar with the antilinear-operator approach to two-particle state vector theory, in particular to the theory of distant correlations (Herbut and Vujičić 1976, 1987, Vujičić and Herbut 1984, 1988). To lessen the surprise, we make a final comment. Returning to classical discrete probability theory, there is a class of $p_{m n}$ analogous to the $|\phi\rangle_{12}$. Their construction goes as follows.
(a) We choose an arbitrary probability distribution p_{m} on M to be the marginal.
(b) We choose an arbitrary bijection U of the so-called support $\bar{M} \equiv\left\{m: p_{m}>0\right\}$ of p_{m} onto some subset of N. Then we define

$$
\forall m, p_{m}>0 \quad p(n \mid m) \equiv \delta_{n, U(m)}
$$

In information theory one calls these

$$
p_{m n} \equiv p_{m} \delta_{n, U(m)}
$$

noiseless and lossless channels.

References

Herbut F 1986 Int. J. Theor. Phys. 251215
Herbut F and Vujičić M 1976 Ann. Phys., NY 96382

- 1987 J. Phys. A: Math. Gen. 205555

Vujičić M and Herbut F 1984 J. Math. Phys. 252253

- 1988 J. Phys. A: Math. Gen. 212931

