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COMMENT 

How to define systematically all possible two-particle state 
vectors in terms of conditional probabilities 

Fedor Herbut 
Faculty of Physics, University of Belgrade, POB 550, 11001 Beograd, Yugoslavia 

Received 29 August 1989 

Abstract. All possible two-particle state vectors can be generated in a systematic way 
from first-particle-reduced statistical operators pI  and anti-unitary correlation operators. 
It is pointed out that this procedure is easily completed so that is defined in terms 
of pl and conditional statistical operators for the second particle. 

To explain the problem addressed in this comment, we turn to classical discrete 
probability theory. Let M and N be two sets of at most countably infinite cardinality, 
and pmn probability distributions on M x N (Vm, Vn: pmn > 0; Zmflpm, = 1). As is well 
known, pm = Xflpmfl is the marginal (distribution) on M, and for every m E M, pm > 0: 
p ( n l m ) = p m , / p m  is the corresponding conditional probability on N. Now, if we want 
to define systematically all possible p m n ,  a natural way to do this is given by the 
following construction. 

( a )  The first step is to choose an arbitrary marginal pm, and for different choices 
the final pmn are certainly different. 

( b )  In the second step (we actually have a set of substeps), for each m E M, pm 7 0, 
we choose an arbitrary probability distribution p (  n( m )  for the conditional probability, 
and for distinct choices we obtain distinct pmn = p,p(n(m). 

Observe the three important features of this construction. 
(i)  The first step is the definition of the marginal. 
(ii) The nth step may depend on the ( n  - 1) preceding ones, but not on the 

(iii) A different choice at each step (or substep) necessarily gives different final p m .  
The problem is how to follow this procedure of construction in quantum mechanics. 

It is the purpose of this comment to point out that along the lines (i)-(iii) one can 
define all two-particle (or two-subsystem) state vectors 14),* E 2, 0 X 2  (2, being separ- 
able Hilbert spaces, i = 1,2). I believe this is of some importance for a systematic 
study of quantum mechanical correlations. 

It was shown in previous work (see corollary 1 in subsection 2.1 of Herbut 1986) 
that any statistical operator p12  in XI 0 X 2  ( p l 2  3 0, TrIzplz = 1) is defined in terms of 
its reduced statistical operator in XI 

succeeding ones. 

pI = Tr2 plz  (1) 
(Tr2 being the partial trace in X2;  p ,  is the counterpart of the pm above), and the set 
of ail conditional statistical operators (the counterparts of the p ( n 1 m ) )  to which p l 2  
gives rise: 

V P ,  E 9(2,), p = Tr, P,p, > 0 P A  PI ) = p - l  Tr2 (PI 0 1 )PI2 (2) 
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where 9( XI) is the set of all projectors in XI. Actually, it was shown that if p12 Z p ; * ,  
then either p1 # pi (cf ( l ) ) ,  and/or 

3Pl E WXl) Tr1 PlPI>O PAPI) f PXP1) 

(cf (2)). 
The physical meaning of p2( PI) is that it represents the state of the second particle 

under the condition that the quantum event PI occurred (its characteristic value 1 was 
obtained in first-kind or second-kind measurement) on the first particle. 

In the case of general statistical operators p I 2  it is far from clear how one could 
give a construction procedure along the lines (i)-(iii). But it seems a natural assumption 
that it should be feasible. 

As far as pure-state statistical operators p12=  /4)12(4112 are concerned, there is 
another relevant previous result (see theorems 4 , 5  and 7 in Herbut and VujiEiC (1976)). 
Each state vector J 4 ) 1 2 ~  2?'10X2 can be constructed along the lines (i)-(iii) (but not 
in terms of conditional statistical operators). 

( a )  One chooses an arbitrary statistical operator p1 in XI to be the first-particle- 
reduced statistical operator. Different choices lead eventually to different I r # J ) 1 2 .  

( b )  One chooses an antiunitary map of R ( p l )  (the range of p l )  into X 2 :  U, (the 
so-called correlation operator of Distinct choices result in distinct 1 4)12. 

Finally, one may take an eigenbasis {IQl:  V i }  of p1  spanning R ( p l ) ,  and then 

I 4 ) i z  = zir;'*/Qi O( u a I i ) l )  (3) 

(all such sub-bases give one and the same Here rl is the chacteristic value of 
pi corresponding to IQl,  i = 1,2,  . . . . 

All we do now is introduce the conditional statistical operators. Let Jcp), E XI be 
outside the null space of p1  (otherwiseTr,p,lcp),(Sol= 0, and Tr2(1cp)l(so/101)14>l~(r#J~12 = 
0 as seen from (3)). We define 

I x ) ~ "  uapi'*I~)l/  II uap: '2 /~) l I / .  (4) 

P2(1(P)I((PII) = I x ) * ( x 1 2  

Then 

where the left-hand side is the conditional statistical operator from that is given 
by (3). (For the proof see equation (34) and theorem 1 in Herbut and VujitiC 1976.) 

For an aribtrary PI E P(Xl) ,  we first decompose it into orthogonal ray projectors: 

= z k l ( P k ) ( ( P k l .  ( 5 )  

Since 

PZ( p - I T r 2 (  0 Z k  1 ( P k ) ( ( P k  1 )PI2 

= Z ; ( T r l  PI1 (Pk)((Pk I/Trlpl PI )p2(1 ( P k ) ( ( P k  1 )  
(the prime denotes that the ( ( P k )  from the null space of p1 are omitted), we finally have 

p2(p,)  = Z L ( T r l  P l / ( P k ) ( ( P k l / T r t  P I P I ) / X k ) ( X k l  (6) 
where I X k )  is determined by Ivk) via (4). The operator p 2 ( P 1 )  does not depend on the 
choice of the decomposition ( 5 ) .  

Thus p1  and the correlation operator U, define the entire requisite set of conditional 
statistical operators {p,(PI):b'Pl E 9(2?',), Tr, p , P ,  0). But to define all p12= (4)12(4112 
systematically, one can hardly do better than go via (3) as explained above. 
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This construction of in terms of the correlation operator U, may come as a 
surprise to the reader unfamiliar with the antilinear-operator approach to two-particle 
state vector theory, in particular to the theory of distant correlations (Herbut and 
VujiisiC: 1976, 1987, VujiisiC and Herbut 1984, 1988). To lessen the surprise, we make 
a final comment. Returning to classical discrete probability theory, there is a class of 
pmn analogous to the 14)12. Their construction goes as follows. 

( a )  We choose an arbitrary probability distribution pm on M to be the marginal. 
( b )  We choose an arbitrary bijection U of the so-called support A? = { m :  pm > 0) 

of pm onto some subset of N. Then we define 

In information theory one calls these 

P m n  P m S n , u c m ,  

noiseless and lossless channels. 

References 

Herbut F 1986 I n t .  J .  Theor. Phys. 25 1215 
Herbut F and VujiEiC M 1976 Ann. Phys., N Y  96 382 
- 1987 J.  Phys. A: Math. Gen. 20 5555 
VujiEiC M and Herbut F 1984 J.  Math. Phys. 25 2253 
- 1988 J.  Phys. A: Marh. Gen. 21 2931 


